Your project of experiment with PRIMO

“My research work consists in understanding how microenvironmental cues influence, guide and shape cell-cell contacts. We are currently particularly interested in determining the role of the biophysical environment in the establishment of apico-basal polarity in mammary gland cells and in liver cells.

The use of PRIMO in this context proved absolutely essential since it allowed us to create artificial microniches in 3D where we could control up to 150 combinations of environmental cues.

By printing our protein of choice and microfabricating intricate structures under the microscope, we are gradually uncovering how the geometrical and biophysical parameters drive the elongation of lumen into tubes in the context of hepatic development and diseases.”

micro-pillars base layer
Combining topographical cues and biochemical cues at cell aggregate level by addition of a micro-pillars base layer. Patient-derived head and neck cancer cell aggregates (HN cells) were grown into 60 µm diameter and 30 µm height micro-niches with Laminin (green) homogeneously coated on the pit walls, and fibronectin (red) coated on the NOA 73 micro-pillars (2 m height and diameter).

C. Stoecklin et al., BioRxiv: (preprint)


Before using PRIMO I had a couple trials with protein microstamping and UV printing using masks. These techniques work well for flat 2d surfaces. However, our goal was really to perform 3D microniches with texture. In this all the trials we had with the existing solution were non-conclusive.


  • Rapidly prototype different patterns and test which one works best for your cells. You do not need any mask of microfabrication. It really helps “creativity on the spot”.
  • Perform mutl-protein printing. PRIMO can reach an impressive ~500nm precision in aligning patterns of 2 different proteins. The cross talk is really minimal. We use this approach to extensively study the combined role of Extra-cellular matrix proteins and E-cadherins.
  • Print proteins on 3D substrate. This was the original challenge when we received our PRIMO. We had a couple grad students working with the PRIMO team and we now have superb printing capabilities in microwell, curved surfaces with many different kinds of proteins and hydrogel.

Little extra which makes all the difference

Performances :

PRIMO is unique in its capabilities, and for us it is the perfect tool. Submicron-resolution, flexibility and versatility in terms of the proteins you can deal with. It is a very reliable tool to print proteins on surface.

Support provided by Alvéole team:

We were among the first to use PRIMO, even as beta testers and the interaction were incredibly fruitful and efficient. After we got the final version of the product, the interactions remained the same. We organized a PRIMO workshop in the lab and I could see how professional and passionate the Alvéole team is. They just love their instrument and they want it to work for you and that you love it too.

“My interest is to understand the role of biophysical and topological properties of tissue microenvironments, such as stem cell niches, in modulating cell fate. Thus, the ability to precisely tune and control extracellular cell/organelle shape and geometry in 2D and 3D, is of critical importance. PRIMO has been incredibly useful in this regard!”

Read the testimonial

“The main interest of the Tardieux’s laboratory and my PhD project is to decipher how forces drive the unique motile and invasive capacities of the single-celled eukaryotic parasite Toxoplasma gondii. I was able to uncover that the parasite glides by coupling polar adhesions and de-adhesion with traction and dragging forces. The PRIMO technique was needed to create composite patterns with a non-adhesive area next to an adhesive one with the crucial request of a sharp demarcation.”

Read the testimonial

“We are working on the generation of 3D cellular microenvironments to reproduce Hematopoietic Niches. PRIMO will be used to generate 3D photo-polymerized microenvironments and to pattern them to localize different cell populations involved in the hematopoiesis.”

Read the testimonial

“Our aim is to develop in vitro experimentation to decipher guiding mechanisms involved in vivo. PRIMO technology is particularly adapted to design in vitro microdevices patterned with controlled patches of the signaling proteins relevant for white blood cell migration.”

Read the testimonial

“We are interested in imaging subcellular localization of certain cell-surface receptors and check whether they colocalize with focal-adhesion complexes. For this purpose, we are interested in making different types of patterns of Fibronectin with subcellular dimensions.”

Read the testimonial

“My research project aims at unravelling how a T cell switches from a fast migratory state to a stationary state upon activation. To do so, I perform live cell imaging of T cells migrating inside micro-fabricated channels coated with activating molecules. However, with this approach, I do not control when and where a T cell encounters the activating molecules.”

Read the testimonial

“Protein micropatterning represents an excellent tool to probe the behavior and functions of cellular systems. PRIMO is specially suited for our experiments, in which the cell-substrate interaction needs to be precisely adjusted both throughout the substrates and in time, in order to control the dynamic behaviour of cell monolayers.”

Read the testimonial

“Our research is at the frontier of soft matter physics and process engineering. More precisely, we develop microfluidic tools to study industrial processes (mixing, flow, drying, filtration, etc.) involving soft matter systems such as polymers or colloids. We use PRIMO to integrate hydrogel membranes in microfluidic devices to mimic ultrafiltration and dialysis processes on the scale of a few nanoliters.”

Read the testimonial

the cellular

Alvéole has developed innovative solutions adapted to all standard cell culture substrates, rigid or soft, in 2D or 3D.

Learn more

Resource Center

Our team gives you all its tips you need to carry out your experimental manipulations and go even further!

Learn more


Our users describe their research projects and explain why they chose to use PRIMO!

Read the testimonials