Custom micropatterning for
cell control

Control the chemistry and topography of cell microenvironment and study their impacts on cell development, using a contactless and maskless quantitative photopatterning solution.

Request a quote

Take control of the cell microenvironment

PRIMO was developed to enable you to design and conduct all the micropatterning experiments you can imagine, in 2D and also 3D.

Bioengineering cell microenvironment becomes easy.

Simply select the pattern you want to use from your computer files (no size or shape limitations). Primo then projects it onto the cell culture substrate and allows you to generate the pattern with the protein of your choice.

“PRIMO is beyond the limits
of your creativity”

Pr. Virgile Viasnoff

PRIMO micropatterning technology

Studying the influence of the microenvironment on intracellular and intercellular mechanisms has been essential for research in cell and medical biology, for many years now.

Among the methods to control this microenvironment is a rapidly developing process called “micropatterning”, which involves creating protein patterns upon which living cells are cultivated. However, current micropatterning techniques are tedious, complex and non-quantitative.

Based on this finding, the scientists at Alvéole developed an innovative multi-protein photopatterning technique to make experimental manipulations easier for researchers.

The PRIMO technique is based on LIMAP* technology (Light Induced Molecular Adsorption of Proteins) and combines a maskless and contactless photolithography system (PRIMO) controlled by a dedicated software (named “Leonardo”) and a specific photoactivatable reagent (PLPP). The combined action of UV and PLPP makes it possible to generate, in only a few seconds, any multi-protein pattern on standard cell culture substrates.

Micropatterning made easy

Discover the key steps of PRIMO photopatterning process

Pattern design


Pattern design

An image file is loaded in
Leonardo Software which sends it
to the PRIMO module

Illumination UV


UV illumination

PRIMO projects the image
onto the substrate (UV light, λ=375nm).
The pattern results from the
combined action of UV and PLPP
(photoactivatable reagent).



Protein micropatterning

Proteins are added
(fibronectin for example) and bind to
the illuminated areas only.



Cell adhesion

Cells are seeded
and adhere to the
protein micropatterns only.


See the detailed micropatterning process using PRIMO, Leonardo and PLPP, on the PLPP webpage.


As a photopatterning system PRIMO can also be used for microfabrication to create microstructured substrates.

See the key steps of the microfabrication process using PRIMO.

Unrivalled performance



gray levels



depending on
experimental conditions

High Resolution


over the entire field of view*

*Approximately 500×300µm,
20x objective



for a full field pattern*

*Approximately 500×300µm,
20x objective



for cell culture**

** slides, coverslips, Petri dishes,
3D devices, microfluidic devices, etc.



Sequential photopatterning of Fibrinogen-A488 in green and Protein A-A647 in red onto PDMS micro-pillars microfabricated with PRIMO.



Epifluorescence microscopy image of 1,5µm dots (spaced by 1,5µm) of ProteinA-488 on PDMS.



Epifluorescence microscopy image of 2µm horizontal lines of ProteinA-488 on glass.



Epifluorescence microscopy image of a gradient of Fibrinogen-A488 on a glass coverslip.


Time saving 
& independence

Design and conduct
your own experiment!

High Flexibility

Draw, download and project a new image according to your needs!


Use your regular cell culture substrates (flat or microstructured, stiff or soft) without constraints

Micropattern a wide range of molecules

More than 10 proteins used daily by our users, including
Fibrinogen-488, Fibrinogen-647, Fibronectin, GFP, Neutravidin-488, Neutravidin-647, PLL-PEG-Biotin, Protein A-647, Streptavidin, as well as primary and secondary antibodies.

Use your usual substrates

Protein patterning:
glass coverslips, glass slides, PDMS, polyacrylamide gel (transfer), polystyrene, UV-curable materials.

Microfabrication: UV-photoresist.

Applications in cell biology

“We are working on the generation of 3D cellular microenvironments to reproduce Hematopoietic Niches. PRIMO will be used to generate 3D photo-polymerized microenvironments and to pattern them to localize different cell populations involved in the hematopoiesis.”

“We are currently particularly interested in determining the role of the biophysical environment in the establishment of apico-basal polarity in mammary gland cells and in liver cells. The use of PRIMO in this context proved absolutely essential since it allowed us to create artificial microniches in 3D where we could control up to 150 combinations of environmental cues.”

“Our aim is to develop in vitro experimentation to decipher guiding mechanisms involved in vivo. PRIMO technology is particularly adapted to design in vitro microdevices patterned with controlled patches of the signaling proteins relevant for white blood cell migration.”

“My research focuses on the mechanical aspects of cell division. With the PRIMO system we wanted to control cellular geometry to impose spatial constraints during mitotic progression.”

“We are interested in imaging subcellular localization of certain cell-surface receptors and check whether they colocalize with focal-adhesion complexes. For this purpose, we are interested in making different types of patterns of Fibronectin with subcellular dimensions.”

“My research project aims at unravelling how a T cell switches from a fast migratory state to a stationary state upon activation. To do so, I perform live cell imaging of T cells migrating inside micro-fabricated channels coated with activating molecules. However, with this approach, I do not control when and where a T cell encounters the activating molecules.”

“Protein micropatterning represents an excellent tool to probe the behavior and functions of cellular systems. PRIMO is specially suited for our experiments, in which the cell-substrate interaction needs to be precisely adjusted both throughout the substrates and in time, in order to control the dynamic behaviour of cell monolayers.”

Resources and Support

Our team gives you all the tips to successfully conduct your experimental manipulations and go even further!



Application notes

See all resources

For an optimized and personalized control over your experimental conditions, discover complementary PRIMO products.

Request an offer
or a demo
If you would like to test PRIMO on one of your experimental projects, receive a quote or simply to know more about Alvéole and its products

Our team will be happy to answer any questions you may have.

+33 (0)1 84 25 51 41
Send us
your request